
CN Bio introduces cross-species DILI services to enhance in vitro to in vivo extrapolation during preclinical drug development
CN Bio, a leading provider of Organ-on-a-chip (OOC) systems and solutions that accelerate drug discovery and development workflows, has introduced two new animal microphysiological system (MPS) models that enhance translatability in preclinical drug safety and toxicology assessments to its Contract Research Services (CRS). Building upon the Company’s FDA-recognized drug induced liver injury (DILI) assay, the expanded offering enables rapid, comparative studies between commonly used animal and human models to flag interspecies differences early, and better informs in vivo study design.
Traditional human in vitro methods have limited capacity to accurately determine drug toxicity. Added to this, the discrepancies between these methods and in vivo animal studies make it challenging to accurately predict safety risks for humans during preclinical testing. Often, unsafe drug candidates are wrongly progressed, and potentially life-saving ones are misclassified and abandoned, ultimately impacting clinical progression. In response to growing market demand for tools that address these concerns, CN Bio has expanded the in vitro to in vivo extrapolation (IVIVE) capabilities of its established PhysioMimix® DILI assay, adding the ability to easily compare results across human-, rat-, and dog-derived Liver-on-a-chip models. These assays offer a modernized workflow to generate predictive and actionable insights that mitigate the risk of costly, late-stage conflicting data, and reduce unnecessary animal use by providing early warning of hepatotoxicity/DILI prior to in vivo studies.
Accessible through the Company’s CRS, the new offering harnesses the longstanding expertise of CN Bio’s scientific team to provide detailed data analysis, optimized outcomes, and data-driven conclusions beyond what is achievable using existing in vitro models. The assay enables a broad range of longitudinal and endpoint testing for DILI-specific biomarkers from single- or repeat-dosing studies over a 14-day experimental window. This provides a more comprehensive overview of underlying mechanisms of hepatotoxicity or latent effects of drug candidates to improve IVIVE assessment and streamline clinical progression.
Dr Emily Richardson, Lead Scientist, Safety and Toxicology, CN Bio, said: “Understanding safety risks is critical to successful drug development, however, fundamental physiological and biological differences between species can lead to inaccuracies in predictions, often causing drug candidates to be wrongfully abandoned as toxic, or worse, mistakenly classified as safe.” She added: “Having established our DILI assay as an industry leading option to garner more valuable insights across the development pipeline, we were in an ideal position to expand its capabilities and address this crucial gap in understanding hepatotoxicity using the most commonly used animal models. Partnering with us to utilize this powerful service not only ensures robust and reliable results but also provides access to a team of Organ-on-a-chip experts, who are invested in your success; to de-risk your pipeline and move it forward with confidence.”
View source version on businesswire.com: https://www.businesswire.com/news/home/20250610859062/en/

Distribution channels:
Legal Disclaimer:
EIN Presswire provides this news content "as is" without warranty of any kind. We do not accept any responsibility or liability for the accuracy, content, images, videos, licenses, completeness, legality, or reliability of the information contained in this article. If you have any complaints or copyright issues related to this article, kindly contact the author above.
Submit your press release